ASP.NET Application Life Cycle
Each time a request arrives at a Web server for an ASP.NET Web page, the first thing the Web server does is hand off the request to the ASP.NET engine. The ASP.NET engine then takes the request through a pipeline composed of numerous stages, which includes verifying file access rights for the ASP.NET Web page, resurrecting the user's session state, and so on. At the end of the pipeline, a class corresponding to the requested ASP.NET Web page is instantiated and the ProcessRequest()
method is invoked.
IIS 6.0 & ASP.NET Pipelines
In IIS 6.0 and previous releases, ASP.NET was implemented as an IIS ISAPI extension.+
In these earlier releases, IIS processed a request to an ASP.NET content type and then forwarded that request to the ASP.NET ISAPI DLL, which hosted the ASP.NET request pipeline and page framework. Requests to non-ASP.NET content, such as ASP pages or static files, were processed by IIS or other ISAPI extensions and were not visible to ASP.NET.+
The major limitation of this model was that services provided by ASP.NET modules and custom ASP.NET application code were not available to non-ASP.NET requests. In addition, ASP.NET modules were unable to affect certain parts of the IIS request processing that occurred before and after the ASP.NET execution path.+
+
IIS 7 and Above Integrated Mode
The main difference in processing stages between IIS 7.0 and IIS 6.0 is in how ASP.NET is integrated with the IIS server. In IIS 6.0, there are two request processing pipelines. One pipeline is for native-code ISAPI filters and extension components. The other pipeline is for managed-code application components such as ASP.NET. In IIS 7.0, the ASP.NET runtime is integrated with the Web server so that there is one unified request processing pipeline for all requests.
IIS processes requests that arrive for any content type, with both native IIS modules and ASP.NET modules providing request processing in all stages. This enables services that are provided by ASP.NET modules, such as Forms authentication or output cache, to be used for requests to ASP pages, PHP pages, static files, and so on.+
The ability to plug in directly into the server pipeline allows ASP.NET modules to replace, run before, or run after any IIS functionality. This enables, for example, a custom ASP.NET Basic authentication module that is written to use the Membership service and SQL Server user database to replace the built-in IIS Basic authentication feature that works only with Windows accounts.+
In addition, the expanded ASP.NET APIs use direct integration to enable more request-processing tasks. For example, ASP.NET modules can modify request headers before other components process the request, by inserting an Accept-Language header before ASP applications execute, which forces localized content to be sent back to the client based on user preference.
Because of the runtime integration, IIS and ASP.NET can use the same configuration to enable and order server modules, and to configure handler mappings. Other unified functionality includes tracing, custom errors, and output caching.
ASP.NET Page Life Cycle
This life cycle of the ASP.NET page starts with a call to the ProcessRequest()
method. This method begins by initializing the page's control hierarchy. Next, the page and its server controls proceed lock-step through various phases that are essential to executing an ASP.NET Web page. These steps include managing view state, handling postback events, and rendering the page's HTML markup. Figure 2 provides a graphical representation of the ASP.NET page life cycle. The life cycle ends by handing off the Web page's HTML markup to the Web server, which sends it back to the client that requested the page.