Dependency Injection
ASP.NET Core includes a built-in dependency injection (DI) framework that makes configured services available throughout an app. For example, a logging component is a service.
Code to configure (or register) services is added to the Startup.ConfigureServices
method. For example:
public void ConfigureServices(IServiceCollection services)
{
services.AddDbContext<RazorPagesMovieContext>(options =>
options.UseSqlServer(Configuration.GetConnectionString("RazorPagesMovieContext")));
services.AddControllersWithViews();
services.AddRazorPages();
}
Services are typically resolved from DI using constructor injection. With constructor injection, a class declares a constructor parameter of either the required type or an interface. The DI framework provides an instance of this service at runtime.
The following example uses constructor injection to resolve a RazorPagesMovieContext
from DI:
public class IndexModel : PageModel
{
private readonly RazorPagesMovieContext _context;
public IndexModel(RazorPagesMovieContext context)
{
_context = context;
}
// ...
public async Task OnGetAsync()
{
Movies = await _context.Movies.ToListAsync();
}
}
ASP.NET services can be configured with the following lifetimes:
- Transient: Transient lifetime services are created each time they are requested. This lifetime works best for lightweight, stateless services.
- Scoped: Scoped lifetime services are created once per request.
- Singleton: Singleton lifetime services are created the first time they are requested (or when
ConfigureServices
is run if you specify an instance there) and then every subsequent request will use the same instance. If your application requires singleton behavior, allowing the services container to manage the service’s lifetime is recommended instead of implementing the singleton design pattern and managing your object’s lifetime in the class yourself.
Services can be registered with the container in several ways. We have already seen how to register a service implementation with a given type by specifying the concrete type to use. In addition, a factory can be specified, which will then be used to create the instance on demand. The third approach is to directly specify the instance of the type to use, in which case the container will never attempt to create an instance.
To demonstrate the difference between these lifetime and registration options, consider a simple interface that represents one or more tasks as an operation with a unique identifier, OperationId
. Depending on how we configure the lifetime for this service, the container will provide either the same or different instances of the service to the requesting class. To make it clear which lifetime is being requested, we will create one type per lifetime option:
using System;
namespace DependencyInjectionSample.Interfaces
{
public interface IOperation
{
Guid OperationId { get; }
}
public interface IOperationTransient : IOperation
{
}
public interface IOperationScoped : IOperation
{
}
public interface IOperationSingleton : IOperation
{
}
public interface IOperationSingletonInstance : IOperation
{
}
}
We implement these interfaces using a single class, Operation
, that accepts a Guid
in its constructor, or uses a new Guid
if none is provided.
Next, in ConfigureServices
, each type is added to the container according to its named lifetime:
services.AddTransient<IOperationTransient, Operation>();
services.AddScoped<IOperationScoped, Operation>();
services.AddSingleton<IOperationSingleton, Operation>();
services.AddSingleton<IOperationSingletonInstance>(new Operation(Guid.Empty));
services.AddTransient<OperationService, OperationService>();
Note that the IOperationSingletonInstance
service is using a specific instance with a known ID of Guid.Empty
so it will be clear when this type is in use. We have also registered an OperationService
that depends on each of the other Operation
types, so that it will be clear within a request whether this service is getting the same instance as the controller, or a new one, for each operation type. All this service does is expose its dependencies as properties, so they can be displayed in the view.
using DependencyInjectionSample.Interfaces;
namespace DependencyInjectionSample.Services
{
public class OperationService
{
public IOperationTransient TransientOperation { get; }
public IOperationScoped ScopedOperation { get; }
public IOperationSingleton SingletonOperation { get; }
public IOperationSingletonInstance SingletonInstanceOperation { get; }
public OperationService(IOperationTransient transientOperation,
IOperationScoped scopedOperation,
IOperationSingleton singletonOperation,
IOperationSingletonInstance instanceOperation)
{
TransientOperation = transientOperation;
ScopedOperation = scopedOperation;
SingletonOperation = singletonOperation;
SingletonInstanceOperation = instanceOperation;
}
}
}
To demonstrate the object lifetimes within and between separate individual requests to the application, the sample includes an OperationsController
that requests each kind of IOperation
type as well as an OperationService
. The Index
action then displays all of the controller’s and service’s OperationId
values.
using DependencyInjectionSample.Interfaces;
using DependencyInjectionSample.Services;
using Microsoft.AspNetCore.Mvc;
namespace DependencyInjectionSample.Controllers
{
public class OperationsController : Controller
{
private readonly OperationService _operationService;
private readonly IOperationTransient _transientOperation;
private readonly IOperationScoped _scopedOperation;
private readonly IOperationSingleton _singletonOperation;
private readonly IOperationSingletonInstance _singletonInstanceOperation;
public OperationsController(OperationService operationService,
IOperationTransient transientOperation,
IOperationScoped scopedOperation,
IOperationSingleton singletonOperation,
IOperationSingletonInstance singletonInstanceOperation)
{
_operationService = operationService;
_transientOperation = transientOperation;
_scopedOperation = scopedOperation;
_singletonOperation = singletonOperation;
_singletonInstanceOperation = singletonInstanceOperation;
}
public IActionResult Index()
{
// viewbag contains controller-requested services
ViewBag.Transient = _transientOperation;
ViewBag.Scoped = _scopedOperation;
ViewBag.Singleton = _singletonOperation;
ViewBag.SingletonInstance = _singletonInstanceOperation;
// operation service has its own requested services
ViewBag.Service = _operationService;
return View();
}
}
}
Now two separate requests are made to this controller action:
Observe which of the OperationId
values varies within a request, and between requests.
- Transient objects are always different; a new instance is provided to every controller and every service.
- Scoped objects are the same within a request, but different across different requests
- Singleton objects are the same for every object and every request (regardless of whether an instance is provided in
ConfigureServices
)